PCSRF: Threats

- Attack mode
 - Physical
 - Cyber
 - Combined
- Undesired activity (including "acts of God")
 - Access to restricted information
 - Interference with authorized operation
 - Unauthorized action
 - Inappropriate authorized action

PCSRF: Threat - undesired activity (1)

- Access to restricted information
 - Can give competitors an advantage
 - Fodder for opportunistic opponents: lawyers, environmentalists, ...
 - Can assist implementation of other classes of attack
 - Can reduce detectability of other classes of attack
- Interference with authorized operation
 - Damage to physical plant (environmental impact, restoral cost and time and effort, loss of business)
 - Interference with meeting legal and/or contractual obligations
 - Impact on profits and customer satisfaction
 - Impact on stock price and credit rating
 - Impact on larger social group

PCSRF: Threat - undesired activity (2)

Unauthorized action

- Damage to plant and/or product
- Theft or other loss of resources or inventory
- Consequential damage to neighbors or customers and/or customers' plant

Inappropriate authorized action

- Same as for unauthorized action
- Permitted action exercised within inappropriate context
- Aggregation of permitted actions leading to an impermissible result

PCSRF: System structure

- Within a geographic site:
 - Functional units of the physical plant
 - Cyber-connected sensors, actuators and control elements
 - Intra-site communications elements
 - Limited physical protection of the site
- Connections between geographic sites:
 - Inter-site physical interactions (e.g., pipe and fluid)
 - Inter-site communications elements
 - Minimal or no physical protection of the interconnections between sites

- Secrecy/confidentiality
 - Duration of required secrecy:
 - Short-term: deny attackers knowledge of system state
 - Medium-term: deny attackers knowledge of inventory levels during period of relevancy
 - Long-term: keep trade secrets
 - Variable: manage crypto parameters (duration a function of what the crypto protects)
 - Proposed countermeasures to attack:
 - Encrypt all such information using a symmetric secret key before it exits the physically protected environment
 - Key-strength determined by duration of secrecy requirement
 - Protection against quantum-computer-based cryptanalysis requires squaring key strength (≈ doubling key length)

Integrity

- Amount of required integrity:
 - Small: probability of not detecting alteration < 10⁻²
 - Medium: probability of not detecting alteration < 10⁻⁴
 - Large: probability of not detecting alteration < 10^{-2N}
- Proposed countermeasures to attack:
 - Small: ≥ 7 bits of predictable value at end of message
 - Medium: ≥ 14 bits of predictable value at end of message
 - Large: ≥ 7N bits of predictable value at end of message
- Proposed approach:
 - Forward chaining through message; integrity info at end
 - Point-to-(multi)point single source sessions: 0xF...F, or N-byte session message sequence number MOD 10^{2 or 4 or 2N}, or successor message sequence number MOD 10^{2 or 4 or 2N}
 - Multicast multi-source sessions: N-byte 0xF...F

Authentication

- Degree of required authentication:
 - Normal operational action: modest
 - Abnormal operational action: strong, typically 2-φ: enable message followed by trigger message within a time window
 - Configuration action (including software upgrade): strong, typically requires off-process state
 - Key management action: strong

- Proposed countermeasures to attack:

- Based partially on RFC3097
- Protected against replay by advancing sequence numbers
- Pairwise authentication via use of a pairwise-shared symmetric secret key, concurrent with integrity provided by the same pairwise-shared key
- Multipoint authentication using either
 - An asymmetric private key encrypting a cryptographically strong message digest, where the recipients all have the corresponding public key, or
 - A series of pairwise-shared identified symmetric secret keys, one per recipient, encrypting a cryptographically strong message digest

- Non-repudiation
 - Degree of required non-repudiation:
 - No known need within machine machine control networks
 - Proposed countermeasures to attack:
 - None required, due to lack of need for feature